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ABSTRACT 

It is shown that for 1 < p < ~ ,  any basis C-equivalent to the unit vector basis 
of  I~ has a (1 + e)-symmetric block basis of cardinality proportional to 
n/log n. When 1 < p < ~ ,  an upper bound proportional to n log log n/log n is 
also obtained. These results extend results of Amir and Milman in [2]. 

§1. Introduction 

After Milman's very successful proof of Dvoretzky's theorem using the iso- 
perimetric inequality, it was soon noticed that other concentrations of mea- 
sure results were useful in the local theory of Banach spaces, particularly for 
almost isometric embeddings. Two pioneering papers in this respect were [ 1 ] 
and [2], by Amir and Milman. Some of their results used concentration of 
measure in the space { - 1, 1 }" × S, to find almost symmetric block bases 
when the original basis satisfied certain conditions. 

Recall that a basis (Y,)r is (1 + e)-symmetric if for any r/, r y E { -  1, I} ~, 
n, r t 'ES,  and sequence of scalars (a~)r~R", 

Y, rliaiy~t~) < (1 + e) ~ rifaiY~,ti) • 
1 I 

The definition of a block basis in this context is natural, but not standard. A 
basis (uj)~' is said to be a block basis of another basis (x~)~' if for some sequence 
of scalars (bt)~' and some sequence of disjoint subsets (Aj)~' of In], aj = 
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~"i~.Aj b~x,. This is not standard because we do not also require every element of 

At to precede every element of Aj whenever i < j .  

Amir and Milman proved in [2] that given a basis (x,.)~' which satisfies, for 
some 1 < p < oo and for all sequences (a~)~'ER n, the inequality 

lail p < aixi < C  lail p , 
1 

there is a (1 + e)-symmetric block basis of  (x~)~' of cardinality proportional to 

n ~/3. This was an intermediate step in their p roofofa  local version of Krivine's 

theorem, but the result is interesting in its own right. However, measure 

concentration arguments, which give best possible results for Dvoretzky's 

theorem, did not appear to do so here. The aim of  this paper is to present an 

improvement of Amir and Milman's result to one that is essentially best 

possible. Both lower and upper bounds for the cardinality of an almost 

symmetric block basis are estimated. The lower bound is proportional to 

n/log n and an upper bound proportional to n log log n/log n is obtained when 

1 < p < ~ .  At the end of the paper, various problems related to this one are 

discussed. 

The inequalities in the paper do not necessarily apply when n is small. This 

is not mentioned again. For the sake of tidiness, and because in this context it 

is not important, the dimensions calculated are not given as integers. Finally, 
the scalars throughout are assumed to be real, but the results carry over easily 

to the complex case. 

§2. The lower bound 

The theorem we shall prove in this section is the following. 

THEOREM 1. Let 1 _-< p < oo, 0 < e < 1/2, C > 1 and let (x~)~ be a basis for  

a normed space X.  Suppose that for  any a = 7_,~ aiei ~ R  n, 

IlaUp- -< ~,aixi--<CllaL. 
1 

Then (x~)~ has a block basis with blocks o f  + 1 coefficients and equal length, 

which is (1 + t )-symmetric and has cardinality 

rn = (1/64)(e/24C) zp . ( e /100C) .  (log(9OC/e)) - In/log n. 

We shall begin with some notation. 
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Let W be the group { - 1, 1 }m × S,, with multiplication given by ((~h)~', a)  o 

((r/;)~', a ')  = ((r/~ ~/;)~', tro a'). There is a natural action o f ~  on ~ :  namely,  for 

a = Y~ ~ a~e~ ~ ~ r~, and (~/, a ) ~  W, r / =  (~/~)~, let (~/, a ) s e n d  a to a,,o = Z ~' the,( o . 
Let f~ be the group { - 1, 1 } ~ × S. with the same multiplication, mutatis 

mutandis, and for b ~ X ,  b = Y,~ b,x~, (e, ~ t ) ~ ,  let to,,~(b)--~ b,,~ = Z~' e~b~x~( o. 
It will sometimes be convenient  to relabel the indices of  (x~)~'. We shall set 

x~s =xti_l)~+s (i = 1 , . . . ,  m , j  = 1 , . . . , h ) ,  where hm = n, and similarly we 

shall set t~ s = et~_0h+s and n~ = n((i -- 1)h + j )  for (e, n ) ~ f ~ .  
Using this relabelling, we can define an action of  W on f~ by ~,,,((e, n)) = 

(e', n'), where 

t i = l  . . . .  , m ,  j = l  . . . . .  h. 
~'ij ~ ~o(i)j  ! 

We shall regard a block basis of  (x~)~' as a random embedding of  R ~ into X. 

Let ~" R '~ ----X be the embedding defined by 

h 

O ' ~ a i e i - -  ~ Y~aixi.i 
i ~ l  i= l  j ~ l  

and write u~ = Z~_~ x~ s, for i = 1 . . . .  , m.  Then let ~,,, = to,,, o ¢, i.e. 

i = 1  i ~ l j ~ l  

Then (e~)~' maps under  ~,,~ to the block basis ((u~),,~)~'. 
The proof  of  Theorem 1 is based on the following three assertions. 

(i) Let A be the set { a E l ~ :  11 a lip =< l, a >_- . . .  > am _-> 0} and let ~ > 0 .  
Then A contains a 8-net of  cardinality at most  m 2/l°gO +6/3))1ogo5/6). 

(ii) If, for a particular (e, n ) E f l ,  we have that for all a in the above net, 

11 0,,~(a,.~) 11 is constant to within 8 11 a [[ph I/p, as (q, a)  runs through "IS, then 
the block basis (n~),,~ . . . .  , (u,,),,~ is (1 + 6C~)-symmetric.  

(iii) For any a E A ,  q M ( a ) ~ R  such that 

Po 3(n,  a) s.t. I II - g ( a ) l  > 1 ~  II a II h < 

Once we have shown (i), (ii) and (iii) the theorem can be proved. Set 6 to be 
e/6C and N -- rn (2~1°~ +,~8c))~o~90c~). Then by (i) the set A contains a ~-net A of  

cardinality N. It follows f rom (iii) that for any a in the net, II II varies 

by at most 8 [[ a [Iph ~/p as (r/, a)  runs through ~ ,  with probability greater than 
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1 - N  -~ in f~. Therefore there is some (e, rr)~f~ for which 11 ¢,,~(a,,°)11 is 
constant to within 6 II a I[,h t/p for all a~A.  In other words there is an (e, rt) E f~ 
which satisfies the conditions of (ii). But then it follows from (ii) that the block 
basis (u,),,~ . . . . .  (Um),,~ is (1 + e)-symmetric. Thus Theorem 1 follows from the 
three assertions. 

Of these steps, (i) is not standard, but not especially difficult. Because the 

n o r m  II " I1,,  defined on R"  by II a II,,. = max{ II : a ) e w }  is a 
1-symmetric norm, and {am,o: a ~ A ,  (r/, tr)EW} is a 6-net of B(I;), the 
statement in (ii) follows from a standard argument to be found in virtually all 
proofs of almost isometric embeddings, namely that the behaviour of a norm is 
controlled by its behaviour on a sufficiently fine net. We shall discuss steps (i) 
and (ii) later, but the important  step of the proof  is (iii). It turns out that 
examining whole W-orbits in R m at a t ime gives good enough estimates in step 
(iii) for it not to matter that our 6-net {a,.o : a E A ,  (r/, tr)EW} is not as small as 
it could be. 

We shall begin by restricting ourselves to the case p = 1. For p > 1 there is 

an extra technicality which we shall discuss afterwards. 

Let us fix a vector a with II all = 1, and a~ > . . .  >am >=0. Let 
BI . . . .  , Bk+l C [m] be defined by 

= / { i  E [ m ] "  2 -j < a i  < 2 - t / - ~ ) } ,  
Bj [ ( iE tm] .a ,  <2_k),  

lNjNk 
j=k+l 

where k = log2(6OCm/e). 
Let b ~ , . . . ,  hk+ l be given by bj = a [Bj (1 _-<j < k + 1). For (~/, a )~W,  we 

define b~.o = (bj)~,o. Clearly b~.o = a~,o IotBj), and the absolute value of  the 
coefficients of b~,o lie between 2 - i  and 2-u-~) when j _-< k, and are at most  
e/6OCm when j = k + 1. 

For each 1 < r _-< k + l, (~/, ty)~W, define a function f~,o : f l ~ R  by 

= E[ II II [ O~,~,(b~,o) ~,x(b~,o),j 1 , . . . ,  r].  

Now, for any fixed (r/, a), the sequence of functions~,o ( = E( II ~,,x(a~,o) II ), 
f~,o, . . . ,  fk+o~ is a martingale. Note that fk,+ol(e, 7t) = II II, although 
the expectation is not taken over a singleton subset of t). This is because if 
~,, ~,(bJ o) = ~,~(b~,o) fo r j  = 1 , . . . ,  k + 1 then ¢,,~,(a~,o) = ~,,~(a~,o). Actually 
the fact that ~ , o ,  • • • ,  Jrk~,o + ~ is a martingale will not concern us. Instead we are 
interested in two facts. 
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(a) The  n u m b e r  of  distinct funct ions f~,, can be controlled,  and  is small 
when r is small. 

More  impor t an t  than  this is 
(b) The  probabil i ty (in f~) of  f~,~((e,n)) differing substantially f rom 

f~.~t ((e, 7t)) is small. 

The  es t imate  in (a) is simple.  I f  we have (r/, tr), (~/', a ' )  such that  b~,o = b~,,,, 
for j = 1 . . . .  , r, then it is easy to see that  f~,, ~f~, ,o, .  But the n u m b e r  o f  
dist inct  choices of  b ~ r ~,o . . . .  ,h,,o is certainly at most  m ( m - 1 ) . . .  
(m - Z~=~ IB/I)" 2 ~-,l~I. So, writ ing flj = I Bj I (3" = 1 , . . . ,  k)  and  ~,j = Z,/= ~ fl~, 
we obtain that  there are at most  (2m)  r, dist inct  funct ionsf~ , , .  

We shall use well-known mart ingale  techniques  to get an es t imate  in (b). (See 
L e m m a  4, Corollary 5 and the remarks  that  follow.) For  now we quote  a result 
and  show why it is all that  is needed  to prove the s ta tement  in (iii). 

The  result we quote  is that  for any (r/, t r ) E ~ ,  1 < r ___< k and  J, > 0, 

and  

__fr--I[(~, rt)) > J ,h]  < exp ( P n l f ; , . ( ( e ,  n))  j , ,o  , ,  , 

Pn [ f  g,, ((t, rt)) - f~,~l ((e, n)) < - ~r h ] < exp ( 
\ 

j2 2 2<, - I)h~ 

Jr 2 2 2t~ - l)h] 

Because of  the b o u n d  given earlier for II hk+l -,,~ II ~ we also have, for any (e, it), 
that  

k + l  f~,o ((e, n)) -- fk . , ( ( t ,  rt)) < (e/60)h = (el60)h II a Ill- 

We shall take the n u m b e r  M(a)  appear ing in (iii) to be Fn( II II ). Note  
that  this is the same as Fn( II II ) for any (r/, tr) EW, as has already been 
ment ioned .  (The letter M is used because later it will s tand for a median. )  Note  
also that  the above probabili t ies are both  zero in the case fir - 0. 

Now suppose that  for some (e, n ) E  [~ it is t rue that  

i.e. 

Then  

3 (r/, o )  s.t. II ¢~,~(a,,o) [] - M ( a )  > _.e 
12 [I a [],h, 
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f ko((e, ~ ) ) -  fg.~((e, ~ ) )>~5  II a Il lh. 

Hence,  if0t  + . .  • + Ok < e/15, there will be some I ___< r =< k and (r/, a )E~F 

such that 

f~,, ((e, n)) r - ,  - - f ; . ,  ((e, ~ ) ) >  Or II a II,h. 

However,  by the estimates in (a) and (b) and the normalizat ion II a II, = 1, 

the probability o f  such r and (r/, tr) existing is at most  

Y. (2m) r, exp 8C2fl r / 
r ~ $  

where s is the smallest value of  r for which ~'r > 0. 

It remains to choose appropriate 6~ . . . .  ,0k and to verify that this probability 

is at most  ½. N -  1. Since the other inequality is exactly similar, we will then be 

done. 
Choosing 0r = 2-r#)127)/2. e/24 will do. 

First, 

k ~ k 
= . 2 ~Sr ~; X Or ~ X -r ,,= ,,~ 

I 1 

__<-- 
24 

k r 112(1 ~ -r ~,/2 
(by the Cauchy-Schwarz  inequality) 

_-<-- 2 
24 r I j - t  

(since Y. 2 -'fl, < Y, a~ = l and 7r = 
t 1 j - i  

= - -  ~j Y. 2 - '  
2 4  j I ~ - j  

24 j - i  15 

Second, 
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Y~ (2m)~,exp - -  ~ 1 =  Y~ exp y, l o g ( 2 m ) -  18, 432C211 

e2 h 
< k exp log(2m) 18,-4-32C ~1 

(since 7r > 0  Vr >_-s). 
But since h > 32(576C2/e2) • ( lOOC/e) .  log(9OC/e) ,  log n, we have 

kexp log(2m) 1 8 , -~4 C 2 ]<=k e x p  logn 1 - - - . l o g e  

1 < - n-(5oc/~)log(9oc/e) 
2 

1 1 -(soc/t)~os(9oc/~) < - N -  1 < - m  
2 2 

which is what was needed. 
When p > 1, the proof is very similar, but it is not possible to work directly 

with the norm. Instead, for fixed a El~', II a I1~ = 1, a~ >= . . .  > am > 0, we 
define, for each (r/, tr)~W, a function g,,o : f~---- R as follows. 

Let F,,o E f~ be the set 

{(e, ~)'110~,.(a,.o)II ~ M II 0~,,.,(a~.~)II ). 

(The symbol M denotes here and for the rest of the section the median taken 
over ~.) 

Let d,,. be a metric on f~ defined by 

Then 

d,~,o((e, n), (e', n')) = ~ l ai F( j :  eo~i)j ~ e~,)j or no~,)j ~ rt'~m} I. 
i - - I  

g,.o((e, n)) = d,.o((e, n). r,.o). 

Thus g,,o measures how far (e, n) is from some (t', it') for which 
II ~,.,.(a,.~) II is below the median. Moreover, the distance is weighted accord- 

ing to a,,o. 
When (r/, tr) = Iv, let us write g for g,,o, d for d,,¢ and F for F,,o. Recalling 

that ~,,. represents the action of(r/, tr) on ~,  we have 
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Also 

a n d  thus  

m 

d,l,o((e, rt), (e', to')) = Y~ 
i - l  

I ai ! p {j  : e,(i)j ÷ e'~oj or n~( m ~ rr~(oj } I 

= d(~u,,o(e, rt), q/,..(e', n')). 

h 

II 0,.,(a,.=)II = ~ ~ e,,(i).irha,x,~,,,,, = II 0~.a,.da)II 
i -- l  j--1 

r,.~ = ((e, ~):11 O.,.(~,da)II ~ M II O~,x(a)II } 

-- D'L '(e ,  ~)'11 ¢~.da)II =< M II O,,,.,(a)II ) 

= ~,~_J ( r ) .  
H en ce  

g..~(e, n) = d.,.((e, n). F..~) = d(~, .~(e,  it). ~,.~(F,.~)) 

= d(~',.,,(t, tt). F) = g(~,.~,(t, n)). 

N o w  the  m a i n  reason g~.~ is useful  is tha t  

I U G. , (a , .~ ) I I  - U O~.., .(a,.o)]l I 

--< II O~..(a,.o) - O~.. .(a, .o)II 

= II O~..,(~.,)(a) - O~,.,(,..,4a) II 

< 2C l a; I p I {J" e.(i)j • e,,(i)j or n~(;. e no(;.  
i 1 

= 2C(d,. ,((e,  n), (e', n'))) t/p. 

Hence ,  i fg , . . (e ,  n)  < 6, t hen  

II O,.da,.o) II - M II 0,....(a) II < 2C61/P" 

From now on, the proof is virtually the same as'before. We define 

{{iE[m] . 2 - J < a f < 2 - e - l ) }  l ~ j < k  

B j =  { i ~ [ m l . a f < _ _ 2 _ k }  j = k + l  

with  k -- 1og2(4 • (24Ci t )  Pro). 
As before,  bj = a Is, (l  _-<j N k), a n d  b,~,~ = (bj),,o. 
T h e n  for  1 =< r -<_ k + 1 a n d  (~, a ) ~ ,  we set 
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f,;,,((e, n)) 

= IEta [g~,,,((e', n'))le~--ei./, ztb = rc° 'ViE ,-t6 o'(Bs),j = 1  . . . . .  h i .  

Note that if eb =eij and n~ = n 0 for all iEU[_~ a(B~), j = 1, . . . .  h, then 
$ _ _  , ~ • , 0,,~(b~.o) - 0,, ~,(b~ ,) for s = 1, . .  r, but more is true, since for example there 

cannot be some i and some r E Sh such that n~ = n~,u). This is purely for the 
sake o f  convenience .  

Note also that for any (e, n), 

J~+~((e, lr))-  ~)) < 4 ( 2 ~ )  h. 
f~.o ((e, 1 e v 

We would like to prove three facts, of which the first two correspond to facts 
(a) and (b) in the proof when p -- 1. These are 

(a)' If r/i = r/' and o(i) = a'(i) for all i in U~_ t B~, then f~,. = f~,,o,. 
(b)' For all (q, a) in ~F, 1 _-< r _-< k and 5r > 0, 

( t~2 9 2(r-l)h) 
e - F - l t t e  n ) )>5 ,h]<exp  ~ ' -  Pn[f; , , ( (  , n)) ~,,, ,, , 8p~ 

(where £ -- I B, I as before). 
(c)' f o  < ~(e/24C)Ph, i.e. E(d~,o((e, n), F,,,)) is small. 
We shall prove (b)' later, using martingale techiques. The fact (c)' is a 

technicality common to many concentration of measure arguments, which will 
also be proved later. To prove (a)', we use the fact that g,.,((e', n'))= 
g(¥~,o(g', it')), and hence 

f ; ,o 

= En [g((e', n')) [ qie'-,~m = eo, rt~-,tm = rtij V i E  ~=~(3 e(Bs),j = l . . . . .  h] 

= [g((e' ,  n'))  l eb = n , e . , ) ,  nb = rt,,)j V i E ,-,U B s , j  = l,  . . . , h] . 

(a)' follows immediately, and with Yr = Z~= 1 PS, the number ofdistinctf~,o is 
at most (2m) r, as before. 

Again just as before, we may now conclude that 



202 w . T .  GOWERS Isr. J. Math. 

(I) 

[ 0 P *  3('7"r)~+s't'f++'°((+'~t))-f#'°(('~)) 2 ~ h 

< r=l ~ (2m)r'exp 8 ~  / 

where J ~ , . . . ,  Jr is any sequence satisfying y k Jr =<-(1/2). (e/24C) p. We shall 
choose Jr to be (1/4). 2 -T~271/2. (e/24C)P. Then just as before, 2~ Jr is indeed 
at most (1/2). (e/24C)P, and the right hand side of (1) is at most 

But if 

and 

and 

then 

and so 

Hence 

kexp(l°g(2m)-( e--~---12ph) 

f,~,. (( , n)) - f ° . ( ( e ,  rr)) _ 2 \24C1 

f°+,,((t, n))< l (--IPh (from (c)') 
4 \24C7 

.~ ,, , n ) )  < 

eh '/p e 
II ~o,~(a.,o)II - M II ~<.~.(a,.o)II =<- = -  II a II~h ''~. 

12 12 

P~ [ 3(~, O')s.t. I II ~e,R(ar/,a)II- M(a)l >--~-~12 [I a ]lph lip] 

2m - ( - ~ )  --6-4)" _-< 2k exp (log e ~2p h \ 

But since h > 64. (24C/e) 2p. (100C/e)log n, this is at most 
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2k exp(log n ( 1 - (100C/e) log(9OC/e) ) )  < n -(soc/~)lott9oc/~) 

< m-(50C/e)log(9OCle) 

< N - ~ .  

We  shall now tu rn  to  the  detai ls  left  ou t  so far. First  we p r o v e  (i). 

LEMMA 2. Let 1 < p < ~ ,  0 < J < 1 and let K C f~ be the set 

{a~l~" II a I1~ ---< l ,  a ,  > . . .  > a~ > 0 } .  

Then K contains a J-net A o f  cardinafity N,  where 

N < n (2/1°$(1 +ti/3))log(15/J). 

PROOF. Let  0 = J / 3  and  let a = (aj)~' ~ K.  I f a '  = (a;)~' ~ lff is any  vec to r  such 

tha t  a~ = < a ;  < (1 + O)a~ fo r  all 1 =< i = < n,  t hen  II a - a '  lip --  < v,.~,~t~'" ..,"Pwp, _-< 0. 

So given a, let us def ine a'  to  be  the vec to r  wi th  

a ;  = min{(1 + 0 ) - ° - l ) : j  > 1, (1 + 0) - t j - t )  > a~}. 

Le t  a"  U 1~ be def ined  by  a7  = max{a / ,  (1 + 0 ) - k } ,  where  k = 2 logl+o(nl 'P).  

N o t e  tha t  k > log~+o(O-ln~/P), so (1 + O) -k < On -~/p. It  fol lows easily tha t  

II a" - a '  lip =<- 0,  and  the re fo re  tha t  II a "  - a lip --< 20 .  If,  given any  vec to r  a, we 

c a n  f i n d  a vector b in A s u c h  t h a t  II b - a"  II --< 0 ,  t h e n  II b - a II --< 3 0  = J ,  s o  

then  A will be  a J -ne t .  In o the r  words ,  it is enough  to  a p p r o x i m a t e  to  wi th in  0 

vec tors  o f  the fo rm a = Zl k a~u~, where  u~ = Xv,, fo r  some  sequence  o f  poss ibly  

e m p t y  sets U i , . . . ,  UK sat isfying I,.J~ U~ = [n],  and  ki "< kj w h e n e v e r  i < j ,  

k~ ~ Ve, ki ~ U j. 

Cons ide r  two vec tors  a -- y k aiui and  a'  = Z k a~U~, where  (u,) k and  (u~) k are o f  

the above  form.  Wr i t ing  v~ = Y.! v '  = Z" j = ~ ui, j = ~ u', we have  

a-~- ~ik~l (og$--~i÷l)Vi, a ' =  ~ff-i (ozi--oli-)-Jvti 

and  

a - a '  = z y . ,  ( . ;  - ,~ ,÷ , ) (v~  - v : ) .  

N o w  since p > 1, (a~ - a~ ÷ 1 + X )  p - -  X p is an increas ing  func t ion  o f x  (when 

x _-> 0), so 
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(,~ - o~+~)(v~ - v~) ~ - 
i - I  

E ( ~ , -  ,~,+,)(v;- v') 
i - I  

< (a]  - a]+ 0 [ supp(v# - v~)[. 

Thus 
k 

II a -  a' I1# < E (~f  - ~ 7 +  1)1 supp(v j -  v~)l. 
j - I  

But 

and 

k 

II a l l g - -  afflsupp(uj)l = Y, (a j -a~+01supp(v j ) l  < 1 + 2 0  
j - - l  j - l  

k 

II a' IIg = E (~7 - ~7÷~)lsuPp(vff)l < 1 + 20, 
j - - I  

so Ni s  at most the size of a 0P-net of(1 + 20)B(lk), i.e. 

N < (1 + 2(1 + 20)/Op) k < (5/O)p k. 

But since k = 2 log n/p  log(l + 0), 

N < n (2/l°g(I + 0))log(5/0). [] 

Assertion (ii) will be an easy consequence of the following lemma. 

LEMMA 3. Let O > O, 2CO < 1, let II • II,  II • ll' and Ill" Ill be norms on R m 
and let A be a O-net o f  the unit ball o f  Ill • Ill such that for all a in A the following 
relations are satisfied: 

(a) Ill a Ill < II a II < II a II' < c Ill a Ill; 
(h) II a II' < (1 + 0) II a II. 

Then for all a in R", II a II' =< (1 + 6C0) II a II- 

PROOF. Let 1 + 7 = sup{ II a II' : II a II = 1 }. Then if IIb II -- 1, choose a from 
A such that Ill a -  b Ill --< 0. Then II a - b II < co ,  so II a II --< 1 + co .  Further- 
more 

II b I1'- l = I II b I1'- II b II I 

< l i b - a l l ' +  I I l a U ' -  IlaU I +  U a - b l l  

=(< 1 + 7)CO + 0(1 + CO) + CO. 

Hence 
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7 < Cg? + C~(1 + 2C + C~) 

and so, since Cc~ < 1/2, 

3C~(I + d~/3) 
~,<= < 6 C g .  r-1 

1 -  C~ 

Assertion (ii) follows from Lemma 3 upon setting III a III ~ II a Ib, II a II -~ 
II ee.~(a)II and II a I1'-- max{ II ee.~(a,.o)I1: n, a ~ V } ,  since then II a I1' is a 
1-symmetric norm. 

The probabilistic estimates are based on the following standard martingale 
inequality which can be found in many places in the literature, for example in 

[51. 

LEMMA 4. Let  fo = E f ,  f~ . . . . .  f~ = f be a martingale with difference 

sequence di = f - f - 1  satisfying II d, II ~ <= ci for  1 ~ i <= n. Then V a > O, 

( a2) 
P [ f -  E f  > a] < exp 2 Z:_~ c~ 2 " [] 

Let (q~, d, P) be the metric probability space { - 1, 1 }n × Sn, where 

d[(e, n), (t ' , n')] = 
n 

Y, {bi: e~ ~ e:or  rt(i) ÷ n'(i)} 

for a sequence b~ >_-... >_-bn >_-0, and the measure P is the normalized 
counting measure on ~.  Define equivalence relations "0, • . . ,  "~n on • by 
(e, ~r) " i  (e', n') iffej = e]and n( j )  = n'(j) for 1 < j  < i. For 1 < i < n let ~ i  be 
the sigma-field whose atoms are the equivalence classes of ---~. Finally, l e t f  be 
a y-Lipschitz function on ~ ,  and setf~ = [ ( f ]  ~'i)  (1 < i < n). We have the 
following corollary of Lemma 4. 

COROLLARY 5. Let (~, d, P) and  fo, . . . .  f~ be defined as above. Then for  all 

s > t and  g > O, 

and 

P[f~ - f >_- c~] < exp ( 

P[f~ - f < - t~] __< exp ( 

8~ '2 Z:+l b/2 

87 ~ Z:+l b 

ProoF. We shall prove only the first inequality above, since the second is 
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similar (and indeed can easily be deduced from the first by looking at the 

function - f i n s t ead  o f f ) .  We restrict our attention to a single a tom of  ~ , .  It 

is then obvious that without  loss of  generality s = n and r = 0. By Lemma 4, 

we need only show that for 1 < i < n, f~ - f~_ 1 < 27b~. 

Suppose A, B ~ ~ ,  A, B c C E ~'~_ ~, and let (r/, a)  be an element of  B. 

Then let ~ be the bijection from A to B given by (e, n) ~ (e', rt'), where 

e,=lei ,  j ~ i  
[r b, j = i  

and n '  = p o n, where p is the transposit ion (n(i)a(i)). 
Since b~ > • • >-- b~ = 0, and A and B are contained in the same a tom of  

~ _ ~ ,  (e, n) and (e', n') are equal except perhaps at i or  n-~(a(i)), and 

b: , t , (o ) < b~. Thus for any (e, n) in A, d((e, rt), ¢((e, n))) < 2hr. 
Since f is 7-Lipschitz, f~ varies by at most  27b~ in any a tom of  ~ _  i, so 

fi -- f i-  1 < 2ybi as was needed. [] 

Setting O = f~, bi = af(.h)l (1 < i < n) and s = 7rh,  t = ~:r_lh, we have 2 -~ < 

b~ < 2 -('-~) for ~,,_~ < i < ~,. Set f((e,  n)) = [l ~,.~(a~.~) I[. 

Since 

(e, it).-~ (e', it')=, ~,~(b~,,) = ~,,,~,(b j~,~) (1 ~ j  =< r) 
and 

(e, n ) '~ ,  (e', re' =,  bJ = ) 0,,~(~.~) = 0e.~,(b~:) (I < j  < r - I) 

and f i s  C-Lipschitz, we obtain from Corollary 5 that 

P[  f~,o ((e, n)) - fA.~ i ((e, rt)) > J, h ] < exp - 8 C2(7, - 7, - i ) 2  - 2(, - 1)h] 

2 exp \ ) 

This establishes the result quoted for fact (b) above. 

When p > l ,  set ~ = ~ ,  bi=a~i/h)1 (I < i < n ) ,  S = T r h ,  t =y,_)h and 

f((e, n)) = g~,~((e, rt)). This t ime f is l-Lipschitz, f, = f~,~ and ft = f~,~l. By 

Corollary 5, we therefore obtain (b)'. 

It remains to prove assertion (c)'. Now sett ingf~-g~,o,  we obtain 

J2h ~. 
P [ f -  E f <  - Jj] < exp ( - 8 Z'~ alP/ 

Hence 
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/ (Ef) 2~ 
P t f =  01 < exp 

==, E f <  (8h log 2) 1/2 

< (I/4)-(e/24C) Ph. 

§3. The upper bound 

The main interest of  this section is negative: the upper bound presented 

shows that the results of  the previous section cannot be substantially 

improved, but it is not particularly interesting in itself. Some of the details of  

the proof will therefore be omitted. 

We shall begin with a simple but useful definition. Let e > 0, let (x~)~' be a 

basis of a normed space (X, II • II ), and let (ai)~ER ~. Then we shall say that 

(xi)~' is (1 + e)-symmetric at (ai) ~ under 11 • [{ if for any (e, 7t), (t', ~) in fL 

e.iaix,,) < (1 + e.) ~ e'iaix~,~i , . 
1 1 

We shall also say that (x~)/' is (1 + e)-symmetric at a, where a = E'Zaixi. (If 

either (l + e) or II • II is obvious from the context, it will sometimes be 

dropped. Thus we may say merely that (xi)~' is symmetric at (ai)~ or  at a.) 
The aim of this section is to construct, forgiven 0 < e < 1/2 and 1 < p < oo, 

a l-unconditional norm II • II on  R n which is 2-equivalent to II • I1,, such  that  

no block basis of  the standard basis of/~" with cardinality exceeding m0 = 

1000(1 + p +q)e 'n loglogn/ log n is (1 + 4-1/Pe/3)-symmetric, (where 

l /p + l/q = 1). Now suppose II • II is any such norm, m~ > mo and (ui)~', is a 
block basis of the standard basis of  R", which is 2-equivalent to the unit vector 
basis of  1~',. Then it is easy to see that it has a sub-basis (vj)~', where m = n 3~4, 

each vector vj is supported on at most h = log n/640(1 + p + q)e p log log n 

coordinates, and the norms of the vj vary by at most n - t,s. This fact will be used 

in the proof ofLemma 9 at the end of the section. Let us call a block basis (u;)~' 

proper if m = n3~4, no u~ is supported on more than h coordinates, and in 

addition if II Ui II, = 1 for each i. 

The norm II • II is obtained in four steps as follows. 

(i) Let ~ be a set system of cardinality to be defined later. Denote its 
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cardinality by N and let r = ePn.  Let F be the collection ([n]Cr)) ~ of all 

sequences of r-sets of  [n] of  the form ( K s : B E  ,~),  and let P be the uniform 

distribution on F. For each 7 ~ F  define a norm II • 2-equivalent to I1 " I1,, 
in a way to be explained. 

(ii) For each proper block basis (u,)~', define a sequence of vectors 

(as : B ~ ~ )  generated by the block basis, such that 

Ps =Pr[(Ui)~' is (1 + 4-~'~e)-symmetric at an under It • I1 1 

is at most p = 2(~m)(l - ( 1 / 1 6 ) 4 * ' h ( 1  - eP/4)2h) rn-t for all B ~ ~ ,  and such that 

the probabilities Pa are independent. 

(iii) Show that there are M = (20n/4 - t'~e)mh proper block bases such that if 

for some ~, they all fail to be (1 + 4-~'Pe)-symmetric under II • lit, then no 

block basis of  cardinality exceeding m0 is (1 + 4-"Pe/3)-symmetric under 

I1" I1 . 
(iv) Verify that pN < M -  t. 

Once we have completed these four steps, we easily obtain a basis 2- 

equivalent to the unit vector basis of  1~ with no large ( 1 + 4-  l'Pe/3)-symmetric 

block basis. From step (ii) it follows that the probability that a given proper 

block basis is (1 + 4-l'Pe)-symmetric is at most pN, since in order to be 

symmetric, it must certainly be symmetric at all the as. But since Mp ~ < 1, 

there is some 7 E F such that none of the block bases obtained in step (iii) is 
(1 + 4-t'Pe)-symmetric under II • I1 - Our basis with no large symmetric block 

basis is then the standard basis of  R ~ with the norm [I " I1 - 

D E F I N I T I O N  OF THE R A N D O M  N O R M .  Let 1 = n ~/2, k = hl+P+qt  -p/q, ~ = 

h -q t  ~/q = ( h / k )  ~/p and let t = l o g ( 1 / 2 h ) / l o g  k > log n/2(l + p + q)log log n, so 

that h Z~ k ~ < l. 
Then for 1 < i =<_ t, let At be the set of  non-negative norm-1 vectors in l~ 

supported on at most h k  ~ points, whose coordinates are bounded above by 

k -~/p. Note that all vectors in A~ are therefore supported on at least k ~ 

coordinates. 
Now let F~ be the set of  support functionals for the vectors in A;. That is, Fi is 

the set of  non-negative norm- l vectors in l~ supported on at most h k  ~ points, 

with all their coordinates bounded above by k-i/q. So F~ is the set of  vectors 

{ [al p-I sign a : aEAi} .  
We also define a second set of  functionals G~ for each 1 _-< i < t. It is the set of  

non-negative vectors of norm 1 in 1~ supported on at most e ' h k  ~ points, whose 

coordinates are bounded above by t -  P/qk-~/q. 
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Now let M be a subset of  [t ] (t/2) such that whenever B, C are in M and B ÷ C, 

then IB N CI _< t/3, and let M have cardinality N = (23/20)/. (This will be 

shown to be possible in Lemma 12 later.) For any B ~ M we define classes Aa, 

FB and GB as follows: 

where ~) denotes a sum with disjoint supports. 

Finally, let r -- ePn and let 7 = (KB:B EM) be an element of F = ([n]tr~) ~. 

We define II " I1~ o n  R n as  follows: 

II x I1~ = II x IlpVmax [(2/t)'/qmax{f(x) + g(x) : f~Fn,  g ~  Gn, supp(g) C Ks)]. 
BE~ 

It is clear that II • I1~ is 2-equivalent to II • lip. The motivation for this 

definition of II • I1~ is as follows. The classes Ai, Fi and G~ (1 < i < t) are 
defined so that a functional in Fi or Gi can only be large at a vector in Aj if i = j .  

Then if B, C ~ M ,  B ~ C, it follows from the separation of B and C that a 

functional in FB or GB cannot be made to fit a vector in Ac all that well, or in 

other words cannot be large at such a vector. This argument is made more 

precise in the proof of Lemma 11 later, where it is shown that if C E M and 

a~Ac,  then 

II a I1~ 
(2) 

= II a IlpV(2/t) TM max{ f(a) + g(a): f E  Fc, g ~ Gc, supp(g) C Kc}. 

But since the subsets KB are chosen independently, it follows from (2) 

(which for now we shall assume) that the probabilities PB defined in (ii) are 
independent. 

To make the statement of Lemma 6 easier, we introduce the following 

definition. Given a proper block basis (u~)~' and a set K ~ [n ]tr) we shall say that 

a vector u~ from the block basis is large on K if it can be restricted to a vector u~ 

with supp(u') _-< ePh, supp(u') C K and II u; I,~ lip >-- 4 -~/pe. The reason for this 

rather artificial seeming definition will become clear in the statement and 

proof of  Lemma 6. 

LEMMA 6. Let 7 = (KB : B UM)UF,  and let (u~)~' be a proper normalized 
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block basis o f  the standard basis o f  ~ such that there exist two sequences 

i t , . . . , i t  and j~ . . . . .  jt and B ~  with u~ . . . . .  ,u~, all large on Ks, while 

II uj, I~  I1~ = O f o r  I <= s ~ I. Then there is a sequence (a,)~' such that Y~ a~u~ 

A~ and (u~)~' fails to be (1 + 4 - ~/P)-symmetric at (a~)~ under II • II~- 

PROOF. Given the assumption (2) above, the proof  is simple. First, note 

that for any ~ c [m] with [Xjl = k J w e  have [XjI-1/vZiexju, EA/. Hence, if  
the sets Xj (j  E ~ )  are all disjoint, and we set ai = (Y~j~B I Xj I-tzPzx,),, we have 

a = Y.~ a~u, CAB. Furthermore,  since h Zf k ~ < l, all but l o f  the a~ are zero, so 

without  loss of  generality Xj C [l] for each j ~ B and thus at + ~ . . . . .  am = 0. 

Let us write a ' =  Y-~=t a~u~, and a" = Z~=I a~uj. We shall then estimate II a' lit 

and II a" II~. 
First, let us calculate max{g(Z~exj a~u~,) :g  E Gj, supp(g) c KB } w h e n j  ~ ~ .  

Write bj = Z,exj a~u,. Then bj EAj and since u, . . . . .  , u~ . . . . . .  u~, are large on Ka, 

we can restrict bj to a vector b] satisfying supp(b]) c KB, I supp(b]) I < ePhk j and 

II b; lip > 4 -t/pe II bj 11~ --- 4 -"~e. W e  can therefore find g E G/such that g(bi) > 
4 - ~/Pe. But then we can find g ~ Gn such that g(a') > 4 -  t/Pet~2. It is obvious 

that we can find f ~ F n  such tha t f (a ' )  > t/2, so 11 a' I1~ >--- (t/2)~'P( 1 + 4 - ~/pe). 

Now II a" I1~ = (t /2)"~, and supp(a") N Ks = ~ .  But for a n y f ~ F n ,  II f l l  = 
(t/2) ~/~, so therefore Ila"llr=<(t/2) "~. Hence (u~)~' fails to be 
(1 + 4 -  l/Pe)-symmetric at a, which proves the lemma. [] 

We shall show that the sequences needed in the conditions of  Lemma 6 exist 
with very high probability. We need a probabilistic estimate whose proof  is 
rather technical and deferred to the end o f  the section. 

LEMMA 7. Let (u~)~ be a proper block bas& and let B ~ .  Then the 

probability that we can find it,. • . ,  it such that u~ . . . . . .  u~, are large on Ks is at 

least 

1-(7/(1- (l/16)4~ph(l 
\ l /  

and the probability that we can find J l , . . .  ,Jr such that the restrictions o f  

nj,, . . . , uj, to KB are zero is at least 

1-(/)(1-(1-tP/4)h) m-t. 

COROLLARY 8. Let (u,)~" be a proper block basis. Then the probability that 

(ui)~' is (1 + 4-t'Pe)-symmetric under II " II~ is at most 
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[ 2 ( / ) ( 1 -  (1/16)4~Ph(l--eP/4)2h)m-l] N . 

PROOF. For each B E ~ ,  construct as GAs as in the proof of Lemma 6. 
By (2), [[ as 117 depends only on Ks (where y = (Ks: B E ~)), so by Lemmas 6 
and 7, 

ps<( l ) (1- - (1 /16)4"h(1- -eP/4)2h)m-t+(7) (1- - (1- -eP/4)h)  m-t 

< 2 ( / ) ( 1 -  (1/16)4"h(1--eP/4)2h) m-t 

and if B 4: C then Ps and Pc are independent. The result follows immediately. 
[] 

The next lemma is a precise statement of step (iii) earlier. It is proved at the 
end of the section. 

LEMMA 9. Let 0 < ~ < 1 and M = (20n / r l )  mh. Then there are proper block 
M ra bases (u~)m=~,..., (U~)~=t of  the standard basis o f  R n such that any norm 

2-equivalent to I1" I1~ which fails to be (I + rl)-symmetric on any o f  
tuM~m fails to be (1 + rl/3)-symmetric on any block basis o f  ( U ~ ) ~ n = l , . . . , ~  " i l i = l  

cardinality exceeding mo. 

The proof of the upper bound is now a simple matter of verification. 

THEOREM 10. Let 0 < e < 1/2. Then there exists a norm II • II on R" such 

that for any xER",  II x lie ---< II x II =<- 2 II x lie, but no II " lip "n°rmalizedblock 
basis o f  cardinality exceeding mo is ( 1 + ~)-symmetric for any ~ < 4 - ~/Pe/3. 

Proof. By Corollary 8 and Lemma 9 (with r /= 4-~/Pe) it remains only to 
show that 

[ 2 ( / ) ( 1 -  (1/16)4~'h(1--eP/4)h)m-t] N<{\420------nn ] - m h _  ~/Pe] 

From this it will follow that there is at least one y E F such that no block basis 
of cardinality exceeding m0 is symmetric under II • I1~. 

Now 
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[2( / ) (1-- (1/16)~ 'h(1--~.P/4)h)m-I]  N 

< 2stats exp( - (m - l)N(l/16)~'h(1 - eP/4) h) 

= exp(N(log 2 + l log m - (m - 1)(1 / 16)4"h (1 -- e P/4)h)). 

But since h < log n/80 e p, this is at most 

exp( - ( 1/2)N(m - l)(1/16)4vh(1 -- e U4) h) 

_--< exp( - (1/2)N(m - l)exp( - ePh(log 16 + 1/4))). 

Now it is easy to check that h < l o g N / 4 0 e  p, so this is at most 
exp( - N1/2(m - 1)) which is certainly at most (20n/4-  I/Pc)-,.h. [] 

We are left with the task of proving the various lemmas and assertions 

assumed without proof earlier. 

LEMMA 11. Let C ~ ~ and let a be a vector in A o  Then for all y ~ F, 

= (KB" B ~ ) ,  

I I a - I I a II ~ ( 2/t)'/q max { f (a )  + g (a)" f ~  Fc, g E Gc, supp(g)  c Kc }. 

PROOF. It is enough to prove that if B, C ~ B ,  B v~ C, f E F n ,  gEGn  and 
a~Ac ,  thenf(a)  + g(a) < (t/2),/o ]] a lip. It is simple to show that i f x  and y are 
two vectors in R", then {x,,., y,,,.,) is maximized when x,,. and y,,,., are both 

non-negative decreasing vectors. We shall therefore assume this o f f ,  g and a. 

Let us write f = Y-ien f with f E Fi for each i, and similarly write g - E~n g/ 
and a = Xjec aj. In order to estimate ( f +  g)(a) we shall est imatef(a)  and g~(a) 

in the cases i E B N C and i E B \ C. 
First let us look at f(Xjecaj)  in the case i E B  N C. Writing f~' for the 

decreasing rearrangement o f f  (i.e. f o r f  without the string of zeros at the front) 

we have 

\ j ~ C  / \ j E C  f 

--< IIf;ll  aj + 1 .  
j E C , j < i  1 
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Now II f ;  I1~ = II f, I1~ ~ k-'/q, and II Zj~c,j<,aj II, = zj~c.~<, II a~ II,. 
supp(aj) < h k  -~ and II aj I1~ = l, II aj II, <= h '/qk j/q. Thus 

and hence 

i - l h l/~'ki/q 
II aj II, 5 ? h"~kJ'q -< 

/~c,j<i j-~ - k ~/q - 1 

(3) f/ aj < ~ + 1 < 2h l/qk- l/q + 1. 
= k l l q  = /e <i -- 1 

Now suppose i ~ B \ C. This time 

j \ jEC, j<i  

where k is minimal such that k > i, k E C. 
We have already estimated the first term. Also 

f,(ak) ~ II f,' II, II ak I1~ ~ h l'Èk''p "k-~'+'~ 

< h l / p k  - l ip  = (~, 

SO 

J 

It follows from (3) and (4) that 

i j 

I f B  ~ C t h e n  IB n CI _-< t13, so f(a) is at most  t/3 + Jt/2. 
The calculations for g(a) are very similar. When i E B  N C we obtain 

g ' ( j~c  a j ) < e +  2h2%-P/qk -'/q, 

and when i ~ B \ C, then 

g i (  ~cai)  < 2h2/ , -p /qk-I 'q  + ek - "p .  
J 

It follows that 

i j 

Since 
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I f  B 4: C then this gives 

g(a) =< th2/qe-P/qk -l/q + et/3 + ek-I /pt /6.  

N o w  II a lip = (t/2) l/a, so 

(2 /0  ''q II a I I f ' ( f +  g)(a) = ( 2 / t ) ( f  + g)(a) 

_-< 2/3 + J + 2hE/qe-P/qk -1/q + 2e/3 + ek-l /P/3.  

But since e < 1/3 and 6 _-< h-q,  this is at most l, as required. I"1 

In order to prove Lemma 7, we shall prove a subsidiary lemma which can be 

regarded as a rather weak generalization o f  a lower bound for the hyper- 

geometric distribution. It is exactly such a bound when all the non-zero 

coordinates of  the vector a are equal. 

LEMMA 7a. Let  r = en, h <-_ r and  let a = ( a ~ ) ~ R "  be a vector such that 

al R • • • >-- ah >_- ah+~ . . . . .  an = 0 and Y,~ ai = 1. Then i f t  < r/4 and  K is 

chosen randomly  f rom [n - t] (~-t), then 

PROOF. Note that F(Y~i~x a,) = c. Clearly 

i = h > n - h - t ~  > ( l - 2 e ) h  

as stated. 

For the first estimate, we use the lower bounds for the hypergeometric 

distr ibution given in [3] p. 8. For  l < r/2, 0 K a < I we obtain 

r::, o,,), 
\ al ]\(1 - a ) l /  = l n n 

~--- n ~t - ; - - o - - ~ ) t / \  n 

> ( l la)"/(U2)~t( l - 2e) / = (e/2a)"/( 1 - 2e)/. 

Now let B0 c B~ c . . .  c Bs c { 1 , . . . ,  h } be defined by B0 = ~ and Bj = 

{i E [n ]  :a~ _>- 2 -j} (1 < j  -_<s), where s = log2(2h). 

Suppose I Bj N K I > 8e I Bj ] for I _-< j _-< s. In this case 
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$ 

Y, a, > ~, Y~{a,'iE(Bj\Bj_ONK} 
i ~ K  j = 1 

j= 

j= 

2 - J l ( g  N K)\(Bj_~ ¢q K)I 

IBj O KI (2  -j - 2 -u+'))  

$ 

>--4e ~ 2 - J lB j l  
j = !  

= 4 e  ~ (2-U-l)--2-J)lBjl 
j= l  

= 

j= l  
2 - u - ' ) [ B j \ g + ~ t  ~ 2 e  

(since Y.{a, • ai < 2 - ' }  < 1/2). 
But 

P[IBj n g l  >8elBjllIBj+~ ng l  > 8 t lBj+a l ]  

>:,,,,)( ,) 
=\8elBjl (1 - 8 t ) lBj[  IBjl 

= (l/16)s'ln, t(1 - 2e)ln/ (1 < j  < s )  

and 

P[IBs N KI ~ 8e IBs I] ~ (1/16)s~Ln'l(1 - 2e) In't. 

Hence 

P[IBj O K[ > 8e [Bj[ V 1 _-<j < s] > (1/16)s~zgs: I -(1 - 2e)Zgn/. 

But I Bj I =< 2 j, so ZIIBj I < 4h,  and  so 

P [  LieX ~ ai>=2e'] >(ll16)32~'(1-2e)2h" [] 

In fact we obtain more  f rom the p roo f  of  L e m m a  7a. Not ice  that  if  

I Bj N K I > 8e I Bj I, for j = 1 , . . . ,  s, then we can restrict a to a vector  a' such 
that,  with the obvious definit ions o f B f , . . . ,  B;,  I B: tq K I = 8e I Bj I for each j ,  
and  B~ c . .  • c B;. Thus  there is a vector  a' with I supp(a')  I < 8eh, supp(a')  c 
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K and Z~eK a; > 2e, with probability at least (1/1 6) 32~- (1 - 2e) 2h . This obser- 
vation allows us to prove Lemma 7 with ease. 

PROOF OF LEMMA 7. We would like to estimate 

Pl ~ P [ u i  is large on K for at most I values of i], 

when K is chosen randomly from [n] (r) and r = eSn. 

Setting a = l ui I" and taking eP/8 instead o f t  in Lemma 7a and the remarks 
following it, we obtain 

P[ui is large on K I supp(us) N K = W s for 1 < j  < i] 

is at least (1 / 16) 4''h. (1 - t p/4)  2h, and so 

< ( 7 / ( 1 -  (l/16)4e'h(l--eS/4)2h) m-I. Pl 
\ 1 /  

Similarly, 

p 2 ~ P [  II u, IK IIs = 0 for at most/values of/] 

< ( / ) ( 1 - ( 1 -  es/4) ' )  m-'. I:] 

Next we shall prove Lemma 9. 

PROOF OF LEMMA 9. Let us call two block bases (ui)P' and (vi)[ ~ a-close if 
they satisfy supp(ui) N supp(v~) = ~ whenever i ~ j  and II u, - v, lip --< a for 
each i. Suppose also, without loss of generality, that for any x E R  n, II x II, =< 

II x II --< 2 II x II,. N o w  if (ui)P' and (v~)p' are a-close then given any sequence 
(ai)~'~ R" ,  

a~u~ - aiv~ < 2 ~ aiu i - -  aiv i 
1 1 I 1 

< 2  ~l ai(ui - vi) p 

= 2 ( ~  lailP II ui - v; IIg) I/p 

< 2 a [ai  I s\ 
l i p .  

Since 0 < r / <  1, it follows that if (ui)P' and (v~)l" are r//8-close and (ui)P' is 
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not (1 + q)-symmetric under [I " 1[ then (v~)~' is not (I + 2r//5)-symmetric 

under I1" II. 
Similarly, if (vi)l" and (w~)~' are n-~/S-close and (v~)~' is not (1 + 2r//5)- 

symmetric under II • II, then (wi)~ is not (1 + U3)-symmetric under II • II.  
Now the number  of ways of choosing m disjoint sets of size h from [n] is 

certainly no more than n mh, and there is an r//6-net of  the unit  sphere of  l~ of 
cardinality at most (15/r/) h. It is thus easy to see that with M- - (20n / r / )  mh, 
there are proper block bases (uJ)~_~ . . . . .  (u~)~-i such that any proper block 

t gtl ~ basis is r//8-close to (u~)~-l for some 1 < r < M. But by the remarks at the 
beginning of the section, any block basis of cardinality exceeding m0 has a 
sub-basis, a multiple of which is n -~/8-close to a proper block basis. The result 
follows. I"I 

Finally, we prove the simple fact that ~ may be taken to be (23/20) t. 

LEMMA 12. There is a subset ~ c [t] tt/2) of cardinality (23/20)' such that 
given any two distinct sets B, C E ~ ,  [B ~ C I < t/3. 

PROOF. For any B~[t]  tta), the number  of CE[t] tim such that IB N CI > 
t/3 is at most 

Y" \ t l 6 -  r lkt l3 + < 3 ,=o \ t l3/\t l6J 

Hence, by picking sets one at a time, each one disjoint from the previous ones, 
we can find ~ with 

I~1 >--~ t12 I \ t 13 / \ t 161"  

But by the estimates for the hypergeometric distribution in [3], 

I 
t13/kt16/ l \t121 \t131 

= (t/2~(1/2)"3(3/4)t/6 
\ t /3/  

< (3/2)m(l/2)u3(3/4)u6 -- (3/4)t/2 

so I ~ t  >= ~(4/3) t/2 >-- (23/20) t. [] 
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§4. Remarks 

(1) When 1 < p < ~ ,  the upper bound can be improved to n/log n if it is 

only required that no large block basis with + 1-coefficients should be 

symmetric. This is because one then has more control over the vectors that a 

block basis must generate. By methods similar to those of Section 3, an upper 

bound proportional to n/log log n can be obtained in the case p = 1. This case 

is different because the unit ball of  1~' is not convex enough to make it possible 
to vary the norms of nearly so many vectors independently. It is not clear 

whether this fact could be the basis of  an improved lower bound. 
There is also no obvious way of exploiting significantly the original distance 

from lff for the purposes of the upper bound. In fact, the norm constructed in 

Section 3 can be shown, by methods similar to the proof of Lemma 11, to be 

(1 + 2e)-equivalent to the p-norm. This is a similar difficulty, since increasing 

the distance from l~ hardly helps to increase the number of vectors whose 

norms can be varied independently. 
(2) It is natural to ask what the correct answer is when p = oo. A simple 

argument, which can be found in [4] pp. 50-51, shows that if (xi)[' is a basis 

which is C-equivalent to the unit vector basis of  12o, then for an absolute 

constant or, it has a block basis of  cardinality k = n ~°gt~+*)/~°gc which is 

(1 + e)-equivalent to the unit vector basis of l k, and which is a f o r t i o r i  

(1 + e)-symmetric. By considering the space lff forp = log n/log C, it is easy to 
show that this result is best possible. Work in progress strongly suggests that 

even if one only wants symmetry, the correct upper bound is still a power of n 

which depends on the parameters e and C. 
(3) Other results of Amir and Milman in [1] and [2] can be improved by 

methods very similar to those of this paper. For example, it can be shown that 

if 1 -<__ p < 2 and (xi)~' is a basis for a normed space ~ s u c h  that the p-type 

constant of X is ~,, and for some c > 0, 

n 

E ~1 eiXi 2> cn lip, 

then (xi)~' has a (1 + e)-symmetric block basis of  cardinality proportional to 

n2~p-~/log n. No interesting upper bound is known, other than the upper 

bounds in this paper for isomorphis of 1;. As was pointed out by Amir and 
Milman, the deterioration when p approaches 2 is necessary, since a constant 

sequence of length n in l; satisfies the given conditions. 
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