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ABSTRACT
It is shown that for 1 < p < x, any basis C-equivalent to the unit vector basis
of I} has a (1 + ¢)-symmetric block basis of cardinality proportional to
nftog n. When 1 < p < x, an upper bound proportional to n log log n/log n is
also obtained. These results extend results of Amir and Milman in [2].

§1. Introduction

After Milman’s very successful proof of Dvoretzky’s theorem using the iso-
perimetric inequality, it was soon noticed that other concentrations of mea-
sure results were useful in the local theory of Banach spaces, particularly for
almost isometric embeddings. Two pioneering papers in this respect were [1]
and [2], by Amir and Milman. Some of their results used concentration of
measure in the space { — 1, 1}" X S, to find almost symmetric block bases
when the original basis satisfied certain conditions.

Recall that a basis (3;)]" is (1 + ¢)-symmetric if for any n, n’€{ — 1, 1}",
n, n’ €S, and sequence of scalars (q;)ER?”,

=(l+¢)

n n
2 1:G; V) 2 N8 Vuviy
1 1

The definition of a block basis in this context is natural, but not standard. A
basis (u;)" is said to be a block basis of another basis (x;)7 if for some sequence
of scalars (b;)f and some sequence of disjoint subsets (4;){" of [n], ;=
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Ze4 bix;. This is not standard because we do not also require every element of
A, to precede every element of 4; whenever i <j.

Amir and Milman proved in [2] that given a basis (x;)] which satisfies, for
some 1 < p < oo and for all sequences (g;) €ER", the inequality

n ip
=¢(Frar)”

there is a (1 + ¢)-symmetric block basis of (x;)} of cardinality proportional to
n'. This was an intermediate step in their proof of a local version of Krivine’s
theorem, but the result is interesting in its own right. However, measure
concentration arguments, which give best possible results for Dvoretzky’s
theorem, did not appear to do so here. The aim of this paper is to present an
improvement of Amir and Milman’s result to one that is essentially best
possible. Both lower and upper bounds for the cardinality of an almost
symmetric block basis are estimated. The lower bound is proportional to
n/log n and an upper bound proportional to » log log n/log n is obtained when
1 < p < 0. At the end of the paper, various problems related to this one are
discussed.

The inequalities in the paper do not necessarily apply when 7 is small. This
is not mentioned again. For the sake of tidiness, and because in this context it
is not important, the dimensions calculated are not given as integers. Finally,
the scalars throughout are assumed to be real, but the results carry over easily
to the complex case.

(i lafl”)”p = “Zn‘.a;x;
1 1

§2. The lower bound

The theorem we shall prove in this section is the following.

THEOREM 1. Letl = p<o0,0<e<1/2,C > 1andlet (x;); be a basis for
a normed space X. Suppose that for any a= 2] a,e; ER",

n
Hamé“§w& =Clal,.

Then (x;)] has a block basis with blocks of t 1 coefficients and equal length,
which is (1 + &)-symmetric and has cardinality

m = (1/64)(¢/24C)* -(¢/100C) - (10g(90C/¢)) ~'n/log n.

We shall begin with some notation.
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Let ¥ be the group { — 1, 1}™ X §,, with multiplication given by ((,)", ¢) °
(), 6’y = ((qin)", @ 2 a’). There is a natural action of ¥ on R”: namely, for
a=3"ageER™ and(n,0)EY, n=(n)" let(n,0)sendatoa,, = Z{" y,e,.

Let Q be the group { — 1, 1}" X S, with the same multiplication, mutatis
mutandis,and forbE X, b= X} b,x;, (¢, t) EQ, let w, ,(b)=b, , = =] £:5,X,.

It will sometimes be convenient to relabel the indices of (x;). We shall set
Xi=Xi—we; (i=1,...,m,j=1,...,h), where hm = n, and similarly we
shall set &; = g;_,4+; and m; = n((i — 1)h + j) for (¢, 1) EQ.

Using this relabelling, we can define an action of ¥ on Q by y, ,((¢, 7)) =
(¢’, m"), where

8{~=?]<8<~ . .
", '”"”} i=1,....m, j=1,...,h.
T = M)

We shall regard a block basis of (x;){ as a random embedding of R” into X.
Let ¢ : R™ — X be the embedding defined by

m m ok
¢: Y ae Z X a;x;
i=1

i=1j=1

and writew, =2/ x;, fori=1,...,m.Thenlet §,, = w,, ° §, i.c.

m m h
Pon Yaer Y Y €;aiXy,.
i=1 i=lj=1
Then (e;){" maps under ¢, , to the block basis ((w;), )"
The proof of Theorem 1 is based on the following three assertions.
(i) Let A be the set {a€/: [af,=1,az:--Za, =0} and let 6 > 0.
Then A contains a d-net of cardinality at most 2108 +/3)og(15/8)
(ii) If, for a particular (¢, 7)€L}, we have that for all a in the above net,
| #..(a,,) || is constant to within J || a ||,2"7, as (, o) runs through ¥, then
the block basis (w,), 4, - - . , (Wy): . 15 (1 + 6CH)-symmetric.
(iii) For any a€ 4, 3 M(a)ER such that

P, [3 (1, 6) st | || fonlays) || — M(@)| > 1_;5 12 [|,5"2| < rm—@ostt+en8Cmossocre)

Once we have shown (i), (i1) and (iii) the theorem can be proved. Set J to be
€/6C and N = m@/os(l +¢/18Clog30C7e) Then by (i) the set A contains a J-net A of
cardinality N. It follows from (iii) that for any a in the net, || ¢, .(a,,) || varies
by at most d || a || ,4"? as (1, ¢) runs through ¥, with probability greater than
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1 —N~!in Q. Therefore there is some (¢, ©)EQ for which | ¢, .(a,,) || is
constant to within d || a || 47 for all a€A. In other words there isan (¢, 7) EQ
which satisfies the conditions of (ii). But then it follows from (i1) that the block
basis (W), x5 - - - s (W), 218 (1 + €)-symmetric. Thus Theorem 1 follows from the
three assertions.

Of these steps, (i) is not standard, but not especially difficult. Because the
norm || - ||, defined on R™ by || a |, = max{ || ¢,.(a,.) || : (n,0)E¥} is a
l-symmetric norm, and {a,,:a€4, (1,0)EY} is a d-net of B([}), the
statement in (ii) follows from a standard argument to be found in virtually all
proofs of almost isometric embeddings, namely that the behaviour of a norm is
controlled by its behaviour on a sufficiently fine net. We shall discuss steps (i)
and (ii) later, but the important step of the proof is (iii). It turns out that
examining whole W-orbits in R™ at a time gives good enough estimates in step
(iii) for it not to matter that our d-net {a,,: a€ A4, (1, 6)E¥} is not as small as
it could be.

We shall begin by restricting ourselves to the case p = 1. For p > 1 there is
an extra technicality which we shall discuss afterwards.

Let us fix a vector a with |a|| =1, and ¢,=:--Za,=0. Let
By, ..., B, C[m]be defined by

J

{{iE[m]:Z‘f<a,~__<_2‘U“’}, 1=jsk
(i€[m]:a; 227%}, i=k+1

where k = log,(60Cm/e).

Let by, ..., by, be given by b;=a|, (1 =j =k +1). For (1, 0)EY, we
define b}, =(b,),,. Clearly b}, =a,, law,)’ and the absolute value of the
coefficients of b}, lie between 2~/ and 2 U~V when j <k, and are at most
£/60Cmwhenj=k + 1.

Foreachl =r =k +1, (1, )€Y, define a function f , : Q—R by

f;,a((ea 7[)) = E[ " ¢z’,n’(an,a) " | ¢c’,n'(b4,a) = ¢u,z(b{1,a )a] = 1, vy "].

Now, for any fixed (1, g), the sequence of functions 7, (= E( || #..(a,,) || ),
Sass. .. fEF is a martingale. Note that f¥}'(e, n) = || 4,.(a,,) || , although
the expectation is not taken over a singleton subset of Q. This is because if
G, (0} s) =B 4(b)s)forj=1,...,k + 1 then ¢, . (a,,) = @, .(a,,). Actually
the fact that f3,, ..., ff+! is a martingale will not concern us. Instead we are
interested in two facts.
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(a) The number of distinct functions f;, can be controlled, and is small
when r is small.
More important than this is

(b) The probability (in Q) of f;,((e, n)) differing substantially from

fr2' (e, m)) is small.

The estimate in (a) is simple. If we have (n, 0), (1, ¢’) such that b} , = b/, .
for j=1,...,r, then it is easy to see that f7, =/, . But the number of
distinct choices of b,,,...,b;, is certainly at most m(m —1)---
(m —Z/.,|B;|)-2%-1%1, So, writing f; = |B;| (j = 1,-- -, k)and y; = Z{_, B,
we obtain that there are at most (2m)” distinct functions f7,.

We shall use well-known martingale techniques to get an estimate in (b). (See.
Lemma 4, Corollary 5 and the remarks that follow.) For now we quote a result
and show why it is all that is needed to prove the statement in (iii).

The result we quote is that for any (n, 0)€Y, 1 =r <kand d, >0,

P ! &h 2% o
r - fr- s >on)< _————

and

5,222('—”}1)

Palf;.((e, ) — f32' (@, n»<_5,h]<exp(_ .

Because of the bound given earlier for || bk}! ||, we also have, for any (¢, 7),
that

ns (&, M) — f1,((e, m)) = (e/60)h = (e/60)h || a ||,.

We shall take the number A (a) appearing in (iii) to be Eq( || ¢, .(a) || ). Note
that this is the same as Eq( || 9, .(a, ) || ) for any (1, 6) €'Y, as has already been
mentioned. (The letter M is used because later it will stand for a median.) Note
also that the above probabilities are both zero in the case f, = 0.

Now suppose that for some (g, 7) EQ it is true that

30, 0) s || 9ualatya) | ~M@)>— Jaih,
1.€.
e )~ [l (e m) > alih.
Then
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5 (e 1) — £2, n»>—f§ lalh.

Hence, if §, + - - - + J, = ¢&/15, there will be some | =r <kand (y,0)EY
such that

Fral€, 1)~ f15' (e, 1)) >0, {|a k.

However, by the estimates in (a) and (b) and the normalization ||a |, =1,
the probability of such r and (4, &) existing is at most

k 22Ar=1g§2p
2m) .
Es( ™ exp( 8C?8, )

where s is the smallest value of r for which y, > 0.

It remains to choose appropriate d,, . . . , d, and to verify that this probability
is at most 3- N~!. Since the other inequality is exactly similar, we will then be
done.

Choosing &, = 2 ~"B)2y}"* . £/24 will do.

First,

k k
So=2 T2
1 i

A""

k 172/ k 112
Y2 ,> (E 2 "y,) (by the Cauchy-Schwarz inequality)
1 1

1 j=1 1 1 j=1

(
é%(é 2-r Zr: B (sinceiZ"ﬂ,éiai= landy, = 2",,8,)
(

¢ Ek: i 2_)1/2
_24 j-lﬂjr=j

eJ2( & _. \"? ¢
< - 278 <—.

24 (j?l ﬂj) 15

Second,
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K 20-Dg2p\ K £h
amyrexp | — ) = (log(2m) — —21
£ @m exp( 86,C ) L exp (y <°g( vy 432c2))

=<kexp (log(2m) - ——ez—h—>
= 18, 432C2

(since 7, >0 Vr = s).
But since / > 32(576C%¢%)-(100C/¢)-10g(90C/¢) -log n, we have

eh 100C . {90C
ke ()~ =) < ke {1~ 1 22€))
exp(og( " 18,23402) p\oe e P\e

1

< — p~(50C/)og(90CYe)

2

1

é -m —(50C/¢e)log(90C/e) < _1_ N—l

2

which is what was needed.

When p > 1, the proof is very similar, but it is not possible to work directly
with the norm. Instead, for fixed a €/, |a|,=1, 4= ---2a, 20, we
define, for each (n, 6)€Y, a function g, ,: Q@ — R as follows.

Let T, , EQ be the set

{(85 ”) : " ¢x.n(an,a) " é M " ¢e',n’(an,a) " }

(The symbol M denotes here and for the rest of the section the median taken
over ()
Let d,, be a metric on Q defined by

m
d,.((e, m), (', 7)) = 42 1@ 1P {J : €0iyj # €a0i)j OF Moip; 7 Moy} -

Then
gn,a((g, n) = dn,a((sa ), rr],a)-

Thus g,, measures how far (¢,7) is from some (¢’,n’) for which
| #..(a,,) || is below the median. Moreover, the distance is weighted accord-
ing to a, ,.

When (1, o) = 1y, let us write g for g, ,, d for d,, and I for I, ,. Recalling
that y, , represents the action of (1, ) on Q, we have
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m
d,.((g, n), (e, 7)) = Z 1@ 1P{J " &7 * €241y OT Mogiy; # Moy }|

i=1

=d(y, (€, 1), ¥, (e, n)).

Also
o)l = | £ 3 e, | = 18unt®]
and thus
Lo={m): | 8y ecn@ | EM| 8.0 ()| }
={y,s' (&, n): || en@) | EM | o (@) | }
=¥y (D).
Hence

&ra(8, M) = dyo((6, ), T 5) = d(W 0, 1), ¥,,6(T,0))
=d(Yq(e, 1), T) = g(¥y.(€, 1))
Now the main reason g, , is useful is that
L @en(@ne) | = || @on(@za) |l |
= || 0ea(@y0) — Bon (@) ||
= [ Pv.pte(@) — By (@) |

m p
= 2C( 2 1a;P1{J €y # €0y OF Moy, # 7fc':(i)j}|>

i=1
=2C(d, (e, m), (&', 2.
Hence, if g, ,(¢, ) <d, then
I $ex(@,0) | =M | 6, (2) || <2C5".
From now on, the proof is virtually the same as before. We define

_{i€lm]:27<af=2"Y"") 1=sj=sk
T (i€m):ar 27Ky ji=k+1
with k = log,(4-(24C/¢e)?m).

As before, b, = a |s,- (1=j=k),and b}, =(b)),,.
Thenfor 1 =r <k + 1 and (n,0)EY, we set
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fra((e, m))
=E, [g.,,o((e’, )| e = ey, nj=m;, ViEU o(B),j=1,..., h].
s=1

Note that if &) =¢; and nj, = x; for all iEU;_, a(B,), j=1,..., h, then
G 2(by,) = 8, (b)) fors = 1,..., r, but more is true, since for example there
cannot be some i and some 7 €S, such that nj; = m, ;. This is purely for the
sake of convenience.

Note also that for any (¢, n),

1/ € \r
(e, m) — fro(e, m é—(—) h.
no (&, 7)) — fr.((e, 7)) 2 \zac
We would like to prove three facts, of which the first two correspond to facts
(a) and (b) in the proof when p = 1. These are
(ay If 5, =n/and o(i) =o’(i) forall i in U;_, B,, then 7, = f7.,..
(by Forall(n,6)in¥,1=r=<kandd, >0,

5,222‘"”h)

Pal /L, (e 1) — 15 (6, 1)) > S,h] <exp( -

(where §, = | B,| as before).

(cY frs <(e/24C)*h, i.e. E(d,,((¢, 7), T, ,)) is small.

We shall prove (b) later, using martingale techiques. The fact (c) is a
technicality common to many concentration of measure arguments, which will
also be proved later. To prove (a), we use the fact that g,,((¢’, n’)) =
g(y, +(¢’, m’)), and hence

fro((e, 7))

= IEQ g((a,’ ﬂ’)) l nisn;"'(i)j = glj’ 7zé"(i)j = nij VlE U G(BS)’j = 1, sy h]

1

=EQ g((8', n’))'s;j:niea(i)j, n{j=7ta(,-)j VIE Ul Bs,j=l,...,h:|.

(ay follows immediately, and with y, = Z{_, f;, the number of distinct f} , is
at most (2m)” as before.
Again just as before, we may now conclude that
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] _ 1/e\r ]
PQ[EI(n,a)E‘I-‘s.t.fn,o((ﬂ,7t)) no (€ n))>2(24) h

k 22(r— l)érz h)
= 2mYrexp| ———
L (@myexp ( 85,

(1)

where é,, ..., d, is any sequence satisfying =¥, =< (1/2)-(¢/24C)*?. We shall
choose &, to be (1/4)-2 "By} .(¢/24C)*. Then just as before, =¥ 6, is indeed
at most (1/2)-(¢/24C)*, and the right hand side of (1) is at most

k exp <log(2m) - (L>2p fl—) .

24C/ 64
But if
4

Feale 1) — f0 (6 M) S = (m)

and
1/ & \»

Sra((E, ”»<Z<ﬁ> h  (from (c))
and

FE (e 1)~ f5 (e, 7)) S (2:C)”h,
then
and so

hl/
I Senl@n) | — M frmlay0) | _81—2 —1—82 la],h".

Hence

&
Pg[B(n, o)s.t. | || ex(a,,) || — M(a)] >1—2- I all,,h”"]

2p h
= 2Zkexp <log am = (24C) 64)

But since & > 64 .(24C/¢)*? -(100C/¢)log n, this is at most
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2k exp(log n(1 — (100C/¢)log(90C/¢))) < n~B0C/2Noa30CTe)

<m - (50C/e)log(90C/e)
<N~
We shall now turn to the details left out so far. First we prove (i).

LEMMA 2. Let 12 p = o0,0<d<1andlet K Cl} be the set

v

{(a€l}:a|,=l,0= - 2a,20}.

Then K contains a d-net A of cardinality N, where

N <y (21os(1+5/3)ogl(15/8)

PROOF. Letf =d/3andleta=(q;)/€K.Ifa’ = (a/){ €[} is any vector such
that g, =a/=(1+6)a, forall 1=i=n, then ||a—4a' |, O al)"? <6.
So given a, let us define a’ to be the vector with

a/=min{(1+6)70":j21,(1+6)V""za).

Let a” €]" be defined by a” = max{a/, (1 + 8) %}, where k = 2 log, . 4(n"’?).

Note that k = log, (0 'n'?), so (1 + 8) =% < 6n~"7. It follows easily that
|| a” —a’ ||, = 0, and therefore that || a” —a ||, = 26. If, given any vector a, we
can find a vector bin A such that ||b—a” || <6, then |[b—a]] =36 =4,s0
then A will be a d-net. In other words, it is enough to approximate to within 6
vectors of the form a = T} a;u;, where u; = x,, for some sequence of possibly
empty sets U,,- - -, U, satisfying Uf U, =[n], and k; <k; whenever i <},
keU, keU,.

Consider two vectors a = Zf a,;u;and 8’ = ¥ o/, where (u;)Fand (u)) ¥ are of
the above form. Writing v, = Z/_, w;, v’ = Z/_, u/, we have

a= 2ik—l (0 —a;y )y, &= 2ik-l (o; —a; V]
and
a—a= Zik-l (; — a; YV — V).

Now since p = 1, (o; — a; ,; + X)? — x?is an increasing function of x (when
x £0), so
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J 14 J=1 ?
‘ '21 (o —a;  Yvi— V) p’_ \ _zl(ai—ai+l)(vi_v,i) ,

S(af - afﬂ)lsul)p(vj - vl

Thus
k
la—a'||2 = T (af —af, ) supp(y; — v))I.
j=1
But
n k D
flallZ= Y af|supp(u))| = ¥ (a; —ej,,)|supp(v)| =1+ 26
j=1 =1
and

k
la'fip=Z (¢ —aj1)lsupp(v)| = 1426,

j=1
so N is at most the size of a 87-net of (1 + 20)B(/}), i.e.
N =(14+2(1 +26)67)* =(5/6)*.
But since k =2 log n/plog(1 + 6),
N =< n(Z/log(l+9))log(5/0)- O
Assertion (ii) will be an easy consequence of the following lemma.

LEMMA 3. Letd>0,2C5 <L, let || - ||, || - |'and || - || be norms on R™
and let A be a &-net of the unit ball of ||| - ||| such that for all a in A the following
relations are satisfied:

@ llali = falf = fal"=Clialj;

® lal'=1+d)|a].

Then forallainR™, ||a|’'=(1+6Co)|al.

Proor. Letl+y=sup{|af’:[|a| =1} Thenif || b| =1, choose afrom
Asuch that |Ja—bj| =6. Then ||a—Db|| =Cd,s0 ||a]l =1+ CJ. Further-
more

Ibl"=1=11bJ"—[bf|
Sb—al’+1lal’~ lall+ [a=b]
=(147)C3 +6(1 + C8) + C3.

Hence
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y=Cdy +d(1 +2C + Cd)
and so, since Cd = 1/2,

3Co(1 +4/3)
1-Co

A

7 =60C9. O

Assertion (ii) follows from Lemma 3 upon setting [|a[|= ||a|,, |al| =
| ex(®) | and || a |I” = max{ || ¢, .(a,0) | : 7, s E'¥), since then [a]|” is a
1-symmetric norm.

The probabilistic estimates are based on the following standard martingale
inequality which can be found in many places in the literature, for example in

[5].

LEMMA 4. Let fo=Lf, f,...,f, =S be a martingale with difference
sequence d; = f; — fi_, satisfying || d; |o =¢; for 1 =i =n. Then Va >0,

a2
PIf—Efzal= - . a
f—Efza] exp( 22{,_102)

Let (®, d, P) be the metric probability space { — 1, 1}" X S,, where

dife, 7). (¢, )] = & {b: & # elor n(i) # ()

for a sequence b, = --- = b, =0, and the measure P is the normalized
counting measure on ®. Define equivalence relations ~q,...,~, on ® by
(e, m)~; (e, n)iffg; =¢/and n(j) = n'(j)for 1 £j <i.Forl =i = nlet F,;be
the sigma-field whose atoms are the equivalence classes of ~;. Finally, let f be
a y-Lipschitz function on &, and set f, = E(f| #;) (1 =i < n). We have the
following corollary of Lemma 4.

COROLLARY 5. Let(®,d,P)andf, ..., [, bedefined as above. Then for all
s>tand 6 >0,

52
STV EPIE (S
[f—fizd]=Sexp 825, b

and

62
Plf—-fi=—-0d]= —_—.
i f=-3d] exp( 8y22,‘+1b,-2>

ProOF. We shall prove only the first inequality above, since the second is
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similar (and indeed can easily be deduced from the first by looking at the
function — finstead of /). We restrict our attention to a single atom of #,. It
is then obvious that without loss of generality s = n and r = 0. By Lemma 4,
we need only show thatfor 1 =i =n, f, — f_, < 2yb,.

Suppose A,BEF,, A,BC CEF,_,, and let (n, o) be an element of B.
Then let ¢ be the bijection from A4 to B given by (¢, z) — (¢’, n'), where

, {s, j#i
&= .
Ni, J=1
and 7’ = p o m, where p is the transposition (n(i)a(i)).

Since ;= --- = b, =0, and 4 and B are contained in the same atom of
F._,, (¢,m) and (¢’, ®’) are equal except perhaps at i or 7z '(g(i)), and
b~y = b;. Thus for any (e, @) in 4, d((e, &), ¥(e, n))) = 2b,.

Since f is y-Lipschitz, f; varies by at most 2yb; in any atom of % _,, so
f— fi_| = 2yb; as was needed. 0O

Setting®@=Q, b, =app(1 =i =n)ands=yh,t =y,_ h,wehave2 ™" =
by=27""Vfory,_<i=y,.Setflle,n))= | ¢..(a,,) .
Since
(&, m)~; (&, )= 0, 2(b} ;) =B n(b),) (1=j=7)
and
(& )~ (&, )= 0, (b)) =on(b),) (1=j=r—1)

and fis C-Lipschitz, we obtain from Corollary 5 that

) 52h
PL (@ 1) = f13' (e ) > B <ex  — = o =)
24052
"e’“’(_ 8C, )

This establishes the result quoted for fact (b) above.

When p>1, set ®=Q, b;=afiuy (1=i=n), s=yh, t =y,_h and
fl(e, m)) = g,,((e, m)). This time fis 1-Lipschitz, f, = f;, and f; = f;3'. By
Corollary 5, we therefore obtain (by'.

It remains to prove assertion (c)'. Now setting f=g, ,, we obtain

Plf—Ef<—08]<ex (— I )
! P gzma)’

Hence
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(ES) 2)

IP[f=0]<exp<— o

<o~ E2)
;P ( 8h

=Ef<(8hlog 2)"
<(1/4)-(e/24C)*h.

§3. The upper bound

The main interest of this section is negative: the upper bound presented
shows that the results of the previous section cannot be substantially
improved, but it is not particularly interesting in itself. Some of the details of
the proof will therefore be omitted.

We shall begin with a simple but useful definition. Let ¢ > 0, let (x;)] be a

basis of a normed space (X, || - || ), and let (a;)]ER". Then we shall say that
()t is (1 + g)-symmetric at (a;) under | - || if for any (g, n), (¢/, #) in ,

> &ia;iXny || =(1+¢) > £/ Xyy;)

1 1

We shall also say that (x;)] is (1 + &)-symmetric at a, where a=27ax;. (If
either (1 +¢) or || - || is obvious from the context, it will sometimes be
dropped. Thus we may say merely that (x;){ is symmetric at (a;){ or at a.)

The aim of this section is to construct, forgiven 0 <g < 1/2and 1 < p < o0,
a l-unconditional norm || - || on R” which is 2-equivalent to || - ||,, such that
no block basis of the standard basis of R” with cardinality exceeding n7; =
1000(1 + p + g)e?nloglogn/logn is (1 + 4~ "?¢/3)-symmetric, (where
1/p + 1/q = 1). Now suppose || - || is any such norm, m, = my and (,)/" is a
block basis of the standard basis of R”, which is 2-equivalent to the unit vector
basis of /. Then it is easy to see that it has a sub-basis (v,)", where m = n¥*,
each vector v; is supported on at most /2 = log n/640(1 + p + q)e? log log n
coordinates, and the norms of the v; vary by at most # =%, This fact will be used
in the proof of Lemma 9 at the end of the section. Let us call a block basis (u;)
proper if m =n¥*, no u; is supported on more than h coordinates, and in
addition if || w; ||, = 1 for each i.

The norm || - || is obtained in four steps as follows.

(i) Let 98 be a set system of cardinality to be defined later. Denote its
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cardinality by N and let r =¢’n. Let I be the collection ([#]")#* of all
sequences of r-sets of [n] of the form (K : B € #), and let P be the uniform
distribution on I'. For each y €T define a norm | - ||, 2-equivalent to | - ||,
in a way to be explained.

(i1) For each proper block basis (u;){", define a sequence of vectors
(ag: B € B) generated by the block basis, such that

ps=Pr[(w){"is (1 + 4~ "?¢)-symmetric at ag under || - ||,]

is at most p = 2(7")(1 — (1/16)***(1 — ¢?/4)*)"~! for all B € #, and such that
the probabilities py are independent.

(iii) Show that there are M = (20n/4 ~"7¢)™ proper block bases such that if
for some y they all fail to be (1 + 4 ~"?¢)-symmetric under | - ||,, then no
block basis of cardinality exceeding mi, is (1 + 4~ 7¢g/3)-symmetric under
I

(iv) Verify that p¥ <M~!,

Once we have completed these four steps, we easily obtain a basis 2-
equivalent to the unit vector basis of /7 with no large (1 + 4~ "7¢/3)-symmetric
block basis. From step (ii) it follows that the probability that a given proper
block basis is (1 + 4~ Pg)-symmetric is at most p", since in order to be
symmetric, it must certainly be symmetric at all the az. But since Mp* <1,
there is some y €T such that none of the block bases obtained in step (iii) is
(1 + 4~ V7g)-symmetric under | - ||,. Our basis with no large symmetric block
basis is then the standard basis of R” with the norm || - ||,.

DEFINITION OF THE RANDOM NORM. Let [ =n'? k=hp'*Ptig-rl § =
h~9%"4 = (h/k)"? and let t = log(1/2h)log k = log n/2(1 + p + g)log log n, so
that A2 ki = 1.

Then for 1 =i =1, let 4, be the set of non-negative norm-1 vectors in /;
supported on at most ik’ points, whose coordinates are bounded above by
k-7, Note that all vectors in A; are therefore supported on at least k'’
coordinates.

Now let F; be the set of support functionals for the vectors in 4;. That is, F; is
the set of non-negative norm-1 vectors in /7 supported on at most sk’ points,
with all their coordinates bounded above by k=74, So F; is the set of vectors
{|al?~'signa:a€4,}.

We also define a second set of functionals G; foreach 1 =/ =< ¢. Itis the set of
non-negative vectors of norm 1 in /” supported on at most e”4k’ points, whose
coordinates are bounded above by ¢ 7%k 4,
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Now let % be a subset of [¢]“/? such that whenever B, Carein Zand B # C,
then |B N C| =t/3, and let & have cardinality N = (23/20)". (This will be
shown to be possible in Lemma 12 later.) For any B € 2 we define classes A,
Fy and Gy as follows:

Ag={@ a,-:a,EAiViEB}, FB={@ AASTY V’EB}»

i€B i€B

GB={ @ g,lg,EG,VIEB}

i€B

where © denotes a sum with disjoint supports.
Finally, let r = ¢’n and let y = (K, : BE ) be an element of I' = ([n]")%.
We define | - ||, on R" as follows:

I 0l = 1l x |, Vmax [(2/1)"*max{f(x) + g(x): fE€ F3, § E G, supp(g) C K5}].

It is clear that | - ||, is 2-equivalent to || - ||,. The motivation for this
definition of || - ||, is as follows. The classes 4;, F; and G; (1 =i =<t) are
defined so that a functional in F; or G, can only be large at a vector in 4;if i = .
Then if B, CE A, B # C, it follows from the separation of B and C that a
functional in F; or G cannot be made to fit a vector in A all that well, or in
other words cannot be large at such a vector. This argument is made more
precise in the proof of Lemma 11 later, where it is shown that if C € £ and
a€A., then

al,

2) = ||a||,V(2/t)" max{ f(a) + g(a) : fE F¢, g EG, supp(g) C K¢}

But since the subsets K; are chosen independently, it follows from (2)
(which for now we shall assume) that the probabilities p, defined in (ii) are
independent.

To make the statement of Lemma 6 easier, we introduce the following
definition. Given a proper block basis (u;)" and a set K €[n]” we shall say that
a vector u; from the block basis is large on K if it can be restricted to a vector u/
with supp(w/) < &%k, supp(w}) C K and || u/ | ||, = 4~ "?. The reason for this
rather artificial seeming definition will become clear in the statement and
proof of Lemma 6.

LEMMA 6. Lety =(Kz: BERB)ET, and let (v;)" be a proper normalized
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block basis of the standard basis of R" such that there exist two sequences
iy, ... iy and jy,...,j, and BERB with u,,...,u, all large on Kg, while
lw, |k, |, =0for | <s =1 Then there is a sequence (a;)[" such that S a,u; €
Ap and (W) fails to be (1 + 4~ "?)-symmetric at (a,)]" under | - ||,-

Proor. Given the assumption (2) above, the proof is simple. First, note
that for any X; C (m] with | X;| = k/ we have | X;|~"7 Z,c, u, E4;. Hence, if
the sets X; (j € #) are all disjoint, and we set a; = (Z;ep | X;| ™ "1y );, we have
a= 23" a;u,€Ap. Furthermore, since & Z{ k' <, all but / of the g, are zero, so
without loss of generality X; C [/] foreachj€Band thus g, ;= --- =4, =0.
Let us write a’ = =/_, a,u, and a” = Z/_, a,u;,. We shall then estimate | a’ ||,
and ||a” |-

First, let us calculate max{g(Z,ex a,u;) : § €G;, supp(g) C K} when j EA.
Write b; = 2,y a,u;. Thenb,€4;and since u,, . .., u;, ..., u;arelarge on K,
we can restrict b, to a vector b/ satisfying supp(b)) C K, |supp(h/)| = e?hk’and

I I, =4 "% | b; |, = 4~""?¢. We can therefore find g € G, such that g(b;) =
4~Y7g_But then we can find g € G, such that g(a’) = 4 ~"7et/2. It is obvious
that we can find f€ Fj, such that fla’) = /2, so || a’ ||, = (¢/2)""(1 + 4~ "%).

Now || a” ||, =(1/2)""?, and supp(a”) N Kz = & . Butforany fEFy, || f|| =
(t/2)"4, so therefore | a”|, =(1/2)"?. Hence (u)" fails to be
(1 + 4~ VP¢)-symmetric at a, which proves the lemma. O

We shall show that the sequences needed in the conditions of Lemma 6 exist
with very high probability. We need a probabilistic estimate whose proof is
rather technical and deferred to the end of the section.

LemMma 7. Let (u)" be a proper block basis and let BE B. Then the
probability that we can find iy, . . ., i such that w,, . .., w, are large on Ky is at
least

- (':’) (1= (1/16)%"(1 — g /4)2ym=!

and the probability that we can find j,,...,J, such that the restrictions of

u, ..., to Kyare zero is at least

- (’7) (1— (1 — eP/4yrym~1.

COROLLARY 8. Let (u,)[" be a proper block basis. Then the probability that
()" is (1 + 4~ "%¢)-symmetric under | - ||, is at most
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[2 (’7) (1 —(1/16)%"(1 — 8"/4)2")"’"]N.

ProoF. For each B € 4, construct ag €4 as in the proof of Lemma 6.
By (2), || az ||, depends only on K (where y = (K : B € 4)), so by Lemmas 6
and 7,

s = ('7) (1 — (1/16)%™(1 — g?/4)2ym~! 4 ('7) (1= (1 —er/a)hym-!

=2 (’7) (1 — (1/16)*™(1 — g?/4)2hym~!
and if B # C then pg and p are independent. The result follows immediately.
O

The next lemma is a precise statement of step (iii) earlier. It is proved at the
end of the section.

LEMMA 9. Let 0<n <1and M = (20n/n)™. Then there are proper block

bases (W)™, ..., W)™, of the standard basis of R" such that any norm
2-equivalent to | - ||, which fails to be (1+ n)-symmetric on any of
@Hr,, ..., W"r", fails to be (1 + n/3)-symmetric on any block basis of

cardinality exceeding my,.
The proof of the upper bound is now a simple matter of verification.

THEOREM 10. Let 0 <e <1/2. Then there exists a norm || - || on R" such
that forany x€R", || x ||, = | x || =2 || x ||,, but no || - || ,-normalized block
basis of cardinality exceeding my is (1 + é)-symmetric for any 6 <4~"V7¢/3.

Proof. By Corollary 8 and Lemma 9 (with = 4 ~"7¢) it remains only to
show that

[2 (7) (1 -(1/16)42#1(1 _ 8”/4)h)m—l]N << 20n )—mh

4-Vrg

From this it will follow that there is at least one y €I such that no block basis
of cardinality exceeding m, is symmetric under || - ||,.
Now
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[2 (’?) (1 = (1/16)*%"(1 — ev/4)'-)m-’]N

< 2Vm™ exp( — (m — D)N(1/16)**(1 — g7/4)*)
= exp(N(log 2 + [log m — (m — I)(1/16)*™(1 — e?/4)*)).
But since 2 =log n/80 ¢”, this is at most
exp( — (1/2)N(m — 1)(1/16)*™(1 — £7/4)*)
< exp( — (1/2)N(m — Dexp( — €?h(log 16 + 1/4))).

Now it is easy to check that A =<log N/40¢?, so this is at most
exp( — N¥¥(m — I)) which is certainly at most (20n/4 ~Vrg) =™, D

We are left with the task of proving the various lemmas and assertions
assumed without proof earlier.

LEMMA 11. Let CE B and let a be a vector in Ac. Then for all yET,
y =(Kg: BERB),

lal,= llal,v(2/t)" max{ fla) + g(a): fEF, g€ G, supp(g) C Kc}.

ProoF. It is enough to prove that if B, CEB, B # C, f€EFy, gE€Gp and
aEAc, then f(a) + g(a) = (¢/2)" || a ||,. It is simple to show that if x and y are
two vectors in R”, then {x, ,, V. ») is maximized when x,, and y,.,- are both
non-negative decreasing vectors. We shall therefore assume this of f, g and a.
Let us write f = 3,5 f; with f; € F, for each i, and similarly write g = 2,5 &;
and a = 2, a;. In order to estimate (f + g)(a) we shall estimate f;(a) and g;(a)
in the cases iEB N Cand i€B\C.

First let us look at f(Z;eca;) in the case i€B N C. Writing f/ for the
decreasing rearrangement of f; (i.e. for f; without the string of zeros at the front)

we have
PUSLPD
=fi (]_EC%« aj) + fi(a)

+ 1.

i

=il | X 8

JeC,j<i
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Now || fille= /il Sk™™, and || Zjec,;<i8 i = Zjec,<i & [l Since
supp(a;) = hk’and | a; ||, =1, || 8; ||, = ~"%’. Thus

i} : hYkila
je£<z a Il é,-g, h'ki = P
and hence
hlia
©) ﬁ<,-ec§<,-a’>ék”« — 1= 2hMaf= Ve 1.

Now suppose | €EB\ C. This time
ﬁ< X aj) éf.’( P aj)+ﬂ(ak)a

JEC JEC,j<i

where k is minimal such that k > i, k€C.
We have already estimated the first term. Also

f@)= /il a o = BV2K7P -0+ P
< i1 =,

SO

@) ﬁ( ) a,.) < 2hVek-ve 4 5,

JEC
It follows from (3) and (4) that
( 2 f>< > a,)éth”"k‘”" +|BNC|+46|B\C]|.

i€B jEC

If B+ Cthen |B N C| =t/3, so f(a) is at most ¢/3 + 5t/2.
The calculations for g(a) are very similar. When i € B N C we obtain

g,-( 2 aj) <e¢+ 2h¥g- gt

jec
and when i €EB\ C, then
gi( 2 aj) < Qh¥Yag—plafe—Va 4 gl—Vp,

JjeC
It follows that
( x gi)( > aj)é th¥g—r-V + ¢|BNC|+¢ek="?|B\C]|.

i€B JEC
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If B # C then this gives
ga) = th¥ig=—rlaf =% + ¢1/3 + gk~ V71/6.
Now | a|, =(t/2)"?, so
@' al, (f+g)a) = (/1) f+ g)a)
=2/3+ 6 +2h¥g= Pk~ + 2¢/3 + gk~ VP/3.
But since ¢ < 1/3 and § < h 9, this is at most 1, as required. 0

In order to prove Lemma 7, we shall prove a subsidiary lemma which can be
regarded as a rather weak generalization of a lower bound for the hyper-
geometric distribution. It is exactly such a bound when all the non-zero
coordinates of the vector a are equal.

LEMMA 7a. Letr=c¢n, h =r and let a =(a;)]ER" be a vector such that
GZ - Z@Zzap = r=a,=0andZla;=1. Then ift <r/4d and K is
chosen randomly from [n — t]" ", then

P[ Y a 228}3(1/16)32”"(1 —2¢)* and P[ 2 =0]_2_(1 —2e)h.

i€k iek
Proor. Note that E(Z,cx a;) = ¢. Clearly

gfe 1)1 = 20

as stated.
For the first estimate, we use the lower bounds for the hypergeometric
distribution given in [3] p. 8. For/ =r/2, 0 <a < 1 we obtain

(N =)/ O = ===

e =)

= (Va)*(e/2)*(1 — 2¢)" = (e/2a)*(1 — 2¢)'.

Now let ByC B, C --- CB;C{l,...,h} be defined by By=J and B; =
{i€[n):a;,Z2277} (1 =j =5), where 5 = log,(2h).
Suppose |B; N K| = 8¢|B;| for 1 =j =s. In this case
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Y a4z 2:: z{ai:iE(Bj\Bj—l)nK}

i€K J=1

> % 27 ((B, N K)\(B,-, N K)|
j=1

=
i

|B,NK|(27/ —27U+D)

1

¥ e

=4¢ Y 2_lejl
=1

j=

—4c 3 QU1 -27)B)]

j=1

= 4¢ ‘Z 27U=YB\B;, | =2

j=1

(since 2{a;:a; =27°} = 1/2).

But
P[|1B,NK|=8¢)B||B, NK|Z8|B,I]
2 (e Zsons)/ {1z
~\8¢|B;|/\(1 — 8¢)| B, | B; |
=(1/16)%5I(1 — 2¢)I8  (1<j<s)
and
P[1B, N K| Z 8¢| B, |1 = (1/16)*!BI(1 — 2¢) !5,
Hence

P[1B,NK| = 8¢|B,|V1=j=s]=(1/16)%81.(1 — 2¢)%18),
But |B;| =2/,s0 Z{|B;| <4h, and so
P[E a,~§2s};(1/16)3“’-(1—26)2”. (|

€K
In fact we obtain more from the proof of Lemma 7a. Notice that if
|B;NK|=8¢|B;|,forj=1,...,s, then we can restrict a to a vector a’ such
that, with the obvious definitionsof B}, . .., B{, | B/ N K| = 8¢|B;| foreach j,
and B{ C - - - C B]. Thusthere is a vector a’ with |supp(a’)| = 8¢h, supp(a’) C
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K and Z,cx a) = 2¢, with probability at least (1/16)>% .(1 — 2¢)?. This obser-
vation allows us to prove Lemma 7 with ease.

ProoF oF LEMMA 7. We would like to estimate
p,=P[u; is large on X for at most / values of i],

when K is chosen randomly from [#]" and r = ¢’n.
Setting a = |u; | and taking £°/8 instead of ¢ in Lemma 7a and the remarks
following it, we obtain

P[u; is large on K | supp(u;)) N K =W, for 1 =j <i]

is at least (1/16)*” .(1 — £?/4)**, and so

pn=E (7) (1 = (1/16)%*(1 — g»/4)*ym—!,
Similarly,

p>=P[ ||, |¢ ||, = O for at most / values of i]
é(’?)(l — (1 — gP/ayhym1. 0

Next we shall prove Lemma 9.

PROOF oF LEMMA 9. Let us call two block bases (u;){" and (v;)* a-close if
they satisfy supp(u;) N supp(v;) = & whenever i #jand fjw;, —v,; ||, =« for
each i. Suppose also, without loss of generality, that for any x ER", || x ||, =

x|t =2} x},. Now if (u;)]" and (v;){" are a-close then given any sequence
(a)"ER™,

m

Yayv;

1

m

Yam,

1

<2 [3an
1

m
T a;
1

4 p

=2

§ai(ui =V
m 1/p
~2(S1ariu-vi)
m I/p
= 2a (? la,l ) .

Since 0 <5 < 1, it follows that if (u;){" and (v;);" are n/8-close and (u;){" is
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not (1 + n)-symmetric under | - || then (v,){" is not (1 + 2%/5)-symmetric
under || - || .

Similarly, if (v;)[" and (w;)" are n~"3-close and (v;)" is not (1 + 2#/5)-
symmetric under || - ||, then (w;)" is not (1 + #/3)-symmetric under || - || .

Now the number of ways of choosing m disjoint sets of size / from [n] is
certainly no more than n™, and there is an 7/6-net of the unit sphere of Ik of
cardinality at most (15/n)*. It is thus easy to see that with M = (20n/n)™,
there are proper block bases (u})™,, ..., W¥)™, such that any proper block
basis is n/8-close to (u}), for some 1 =r = M. But by the remarks at the
beginning of the section, any block basis of cardinality exceeding m, has a
sub-basis, a multiple of which is n ~"3-close to a proper block basis. The result
follows. O

Finally, we prove the simple fact that 8 may be taken to be (23/20Y.

LEMMA 12. There is a subset B C [t]1“? of cardinality (23/20)! such that
given any two distinct sets B, CE®R, |BN C| =t/3.

Proor. For any B€[t]“?, the number of CE[¢]“? such that |B N C| >

t/3 is at most
us [ )2 12 tI2\(t/2
% (s Mms )53 (lle)
r=o\t/6—r/\t/3+r t/3/\t/6

Hence, by picking sets one at a time, each one disjoint from the previous ones,

we can find 4 with
1/t t/I2\(t/2
0125 (10)/ (s e)
I\e/2 t/3/\t/6

But by the estimates for the hypergeometric distribution in [3],

tI2\(t/2 t t/2 s . »
<t/3><t/6>/ <z/2>§<z/3)(”2) (1/2)"5(2/3)

/2
- 1/2)"(3/4)"e
s 0200

v

= (3/2)"%(112)"%(3/4)"® = (3/4)"

so || = §(4/3)"* =z (23/20)". 0
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§4. Remarks

(1) When 1 < p < o, the upper bound can be improved to n/log n if it is
only required that no large block basis with = l-coefficients should be
symmetric. This is because one then has more control over the vectors that a
block basis must generate. By methods similar to those of Section 3, an upper
bound proportional to n/log log n can be obtained in the case p = 1. This case
is different because the unit ball of /] is not convex enough to make it possible
to vary the norms of nearly so many vectors independently. It is not clear
whether this fact could be the basis of an improved lower bound.

There is also no obvious way of exploiting significantly the original distance
from /] for the purposes of the upper bound. In fact, the norm constructed in
Section 3 can be shown, by methods similar to the proof of Lemma 11, to be
(1 + 2¢)-equivalent to the p-norm. This is a similar difficulty, since increasing
the distance from /; hardly helps to increase the number of vectors whose
norms can be varied independently.

(2) It is natural to ask what the correct answer is when p = co. A simple
argument, which can be found in [4] pp. 50-51, shows that if (x;){ is a basis
which is C-equivalent to the unit vector basis of /2, then for an absolute
constant «, it has a block basis of cardinality k = pelel+eVeC which is
(1 + ¢)-equivalent to the unit vector basis of /X, and which is a fortiori
(1 + &)-symmetric. By considering the space /; for p = log n/log C, it is easy to
show that this result is best possible. Work in progress strongly suggests that
even if one only wants symmetry, the correct upper bound is still a power of n
which depends on the parameters ¢ and C.

(3) Other results of Amir and Milman in [1] and [2] can be improved by
methods very similar to those of this paper. For example, it can be shown that
if 1 = p <2 and (x,) is a basis for a normed space &such that the p-type
constant of X is p, and for some ¢ >0,

n

Y ex;

1

E

; cnl/p’

then (x;)? has a (1 + ¢)-symmetric block basis of cardinality proportional to
n¥?~!log n. No interesting upper bound is known, other than the upper
bounds in this paper for isomorphis of /;. As was pointed out by Amir and
Milman, the deterioration when p approaches 2 is necessary, since a constant
sequence of length » in /] satisfies the given conditions.
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